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A Decidable Problem

● Consider the following problem:

Given two regular expressions R₁ and R₂,
determine whether R₁ and R₂ have the same

language.

● This problem is indeed decidable.
● We autograded your regular expressions in Problem

Set Seven. The algorithm we used is 100% accurate.

● Theorem: There is no algorithm for solving this
problem whose runtime is O(2m+n), where m and n 
are the lengths of the input regular expressions.



  

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?

● In complexity theory, we ask the question

What problems can be solved
eficiently by a computer?

● In the remainder of this course, we will explore
this question in more detail.



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verifed by a computer. 

The mapping reduction can be used to fnd 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved eficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verifed eficiently by a 
computer.
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The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What resources do we want our programs to

make “eficient” use of?
● How do we draw the line between “eficient”

and “ineficient?”



  

Correctness

● We have a program written in your Favorite Programming
Language that’s a decider for some problem.

● What does it mean for this program to be correct?

Go to
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Eficiency

● We have a program written in your Favorite Programming
Language that’s a decider for some problem.

● What aspect of that program might quantify “eficiency?”

● The number of lines of code in the program.

● How deeply-nested the loops or recursion in the program are.

● How much time it takes for the program to solve the problem.

● How much memory it takes for the program to solve the problem.

● How much power it takes for the program to solve the problem.

● How much network communication it takes for the program to solve
the problem.

● …
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What is an eficient algorithm?

Let’s explore some problems and
solutions and see what we notice!



  

A Common Pattern:
Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but fnite space of
possible options.

● Searching this space might take a staggeringly
long time, but only fnite time.

● From a decidability perspective, this is totally
fne.

● From a complexity perspective, this may be
totally unacceptable.



  

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10
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Longest Increasing Subsequences

● One possible algorithm: try all subsequences, fnd
the longest one that's increasing, and return that.

● There are 2n subsequences of an array of length n.

● (Each subset of the elements defnes a subsequence.)

● Checking all of them to fnd the longest increasing
subsequence will take time O(n · 2n).

● Fact: the age of the universe is about 4.3 × 1026 
nanoseconds. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't terminate if
you give it an input of size 100 or more.



  

A Diferent Approach



  

Patience Sorting
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whose top value is larger than it. (If you
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Then, add a link to the top number in the
previous pile.
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Patience Sorting
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Longest Increasing Subsequences

● Theorem: There is an algorithm that can fnd the
longest increasing subsequence of an array in time
O(n²).

● It’s the previous patience sorting algorithm, with
some clever implementation tricks.

● This algorithm works by exploiting particular
aspects of how longest increasing subsequences
are constructed. It's not immediately obvious that
it works correctly.



  

Another Problem
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length of the shortest
path from F to A in

this graph.
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Shortest Paths

● It is possible to fnd the shortest path in a
graph by listing of all sequences of
nodes in the graph in ascending order of
length and fnding the frst that's a path.

● This takes time O(n · n!) in an n-node
graph.

● For reference: 29! nanoseconds is longer
than the lifetime of the universe.



  

Shortest Paths

● Pop Quiz! How else could we fnd a
shortest path?



  

Shortest Paths

● Theorem: It's possible to fnd the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-frst search!
● This scales nicely!
● The algorithm is a bit nuanced. It uses

some specifc properties of shortest
paths and the proof of correctness is
nontrivial.



  

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defning Eficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes in the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided eficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided eficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

 

It's an assumption about the nature of
eficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

 

It's an assumption about the nature of
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The Cobham-Edmonds Thesis

Which of the following are considered eficient runtimes?
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Which of the following are considered eficient runtimes?

n2 – 3n + 17 ✓ This is a polynomial in n.

✓ Bounded by n2.

✓ This is a polynomial in n.

× Eventually bigger than nk for all k.
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× Eventually bigger than nk for all k.

× Eventually bigger than nk for all k.

✓10500 = 10500 n0 is a polynomial in n.

✓



  

Why Polynomials?

● Polynomial time somewhat captures eficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:

● The sum of two polynomials is a polynomial.
(Running one eficient algorithm, then another,
gives an eficient algorithm.)

● The product of two polynomials is a polynomial.
(Running one eficient algorithm a “reasonable”
number of times gives an eficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one eficient algorithm as the
input to another eficient algorithm gives an
eficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }      

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
eficiently.



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm).

● And a ton of other problems are in P as
well.
● Curious? Take CS161!





  Undecidable Languages

Regular
Languages CFLs RP



  

What can't you do in polynomial time?



  

start

end

How many paths
are there from
the start node
to the end

node?

How many paths
are there from
the start node
to the end

node?



  

, ,

How many subsets
of this set are

there?

How many subsets
of this set are

there?

,



  

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not
very large.
● Each simple path has length no longer than

the number of nodes in the graph.
● Each subset of a set has no more elements

than the original set.

● This brings us to our next topic...



  

What if you need to search a large
space for a single object?



  

Verifers – Again
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Verifers – Again

Is there an ascending subsequence of
length at least 5?

4 3 11 9 7 13 5 6 1 12 2 8 0 10



  

Verifers – Again

Is there an ascending subsequence of
length at least 5?
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Verifers – Again

Is there a path that goes through
every node exactly once?



  

Verifers – Again
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Verifers

● Recall that a verifer for L is a TM V 
such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.



  

Polynomial-Time Verifers

● A polynomial-time verifer for L is a
TM V such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “eficiently” (its runtime is O(|w|k) for

some k ∈ ℕ).
● All strings in L have “short” certifcates

(their lengths are O(|w|r) for some r ∈ ℕ).



  

The Complexity Class NP

● The complexity class NP (nondeterministic polynomial time) 
contains all problems that can be verifed in polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                           verifer for L }

● The name NP comes from another way of characterizing NP. If
you introduce nondeterministic Turing machines and
appropriately defne “polynomial time,” then NP is the set of
problems that an NTM can solve in polynomial time.

● Useful fact: NP ⊊ R.

● Proof idea: If L ∈ NP, all strings in L have “short” certifcates.
Therefore, we can just try all possible “short” certifcates and see if
any of them work. (Showing NP is a strict subset of R requires some
more advanced techniques.)



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifer for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifer for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

Time-Out for Announcements!



  

Please evaluate this course in Axess.
Your comments really make a diference.



  

Final Exam Logistics

● Our fnal exam is on , Saturday, June 7th from
8:30AM – 11:30AM. 

● Everyone should have received an email with
their exam location

● Seat assignments coming later this week
● The fnal exam is covers all psets and lectures.

●  The format is the same as the midterms, a mix
of short-answer questions and written proofs.

● Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” × 11” notes sheet with you.



  

Review Session

● 2-3pm Thursday
● STLC115



  

Back to CS103!



  

And now...



  

The
 

Biggest Question
 

in
 

Theoretical Computer Science



  

P ≟ NP



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifer for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)     

bool solveProblemL(string w) {

    do some work;
    return the answer;
}

bool solveProblemL(string w) {

    do some work;
    return the answer;
}



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifer for L }

Polynomial-Time
Verifer for L

yes!

no!

input string (w)     

certifcate (c)  
(ignored)

bool solveProblemL(string w, string c) {
    /* don't even look at c */
    do some work;
    return the answer;
}

bool solveProblemL(string w, string c) {
    /* don't even look at c */
    do some work;
    return the answer;
}

P ⊆ NP
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P ≟ NP

● The P ≟ NP question is the most important open
question in theoretical computer science.

● With the verifer defnition of NP, one way of phrasing
this question is

If a solution to a problem can be checked eficiently,
can that problem also be solved eficiently?

● An answer either way will give fundamental insights
into the nature of computation.



  

Why This Matters

● The following problems are known to be eficiently
verifable, but have no known eficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have eficient solutions.

● If P ≠ NP, none of these problems have eficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly dificult

problems could be solved eficiently.
● Our capacity to solve many problems will

scale well with the size of the problems we
want to solve.

● If P ≠ NP:
● Enormous computational power would be

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to

keep up with our curiosity.



  

What We Know

● Resolving P ≟ NP has proven extremely dificult.

● In the past 50 years:
● Not a single correct proof either way has been

found.
● Many types of proofs have been shown to be

insuficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but it isn't an overwhelming majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● https://www.cs.umd.edu/~gasarch/papers/poll.pdf

https://www.cs.umd.edu/~gasarch/papers/poll.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has ofered
a $1,000,000 prize to anyone who proves

or disproves P = NP.



  

“My hunch is that [P ≟ NP] will be solved
by a young researcher who is not

encumbered by too much conventional
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who frst popularized the P ≟ NP problem.)



  

What do we know about P ≟ NP?



  

Adapting our Techniques



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifer for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifer for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem

● The R and RE languages correspond to
problems that can be decided and
verifed, period, without any time
bounds.

● To reason about what's in R and what's
in RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own

source code.

● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

Next Time

● Reducibility
● A technique for connecting problems to one

another.

● NP-Completeness
● What are the hardest problems in NP?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

