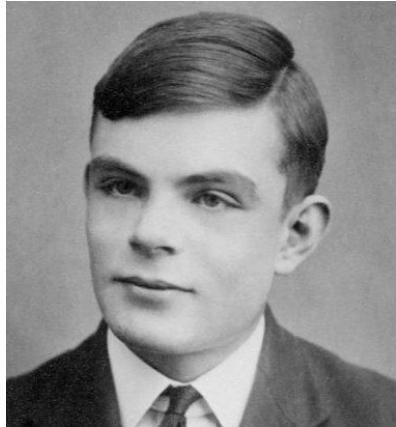


Complexity Theory



Alan Turing
*On Computable
Numbers*
1936

THESE EQUATIONS

SPACE

COMPONENT

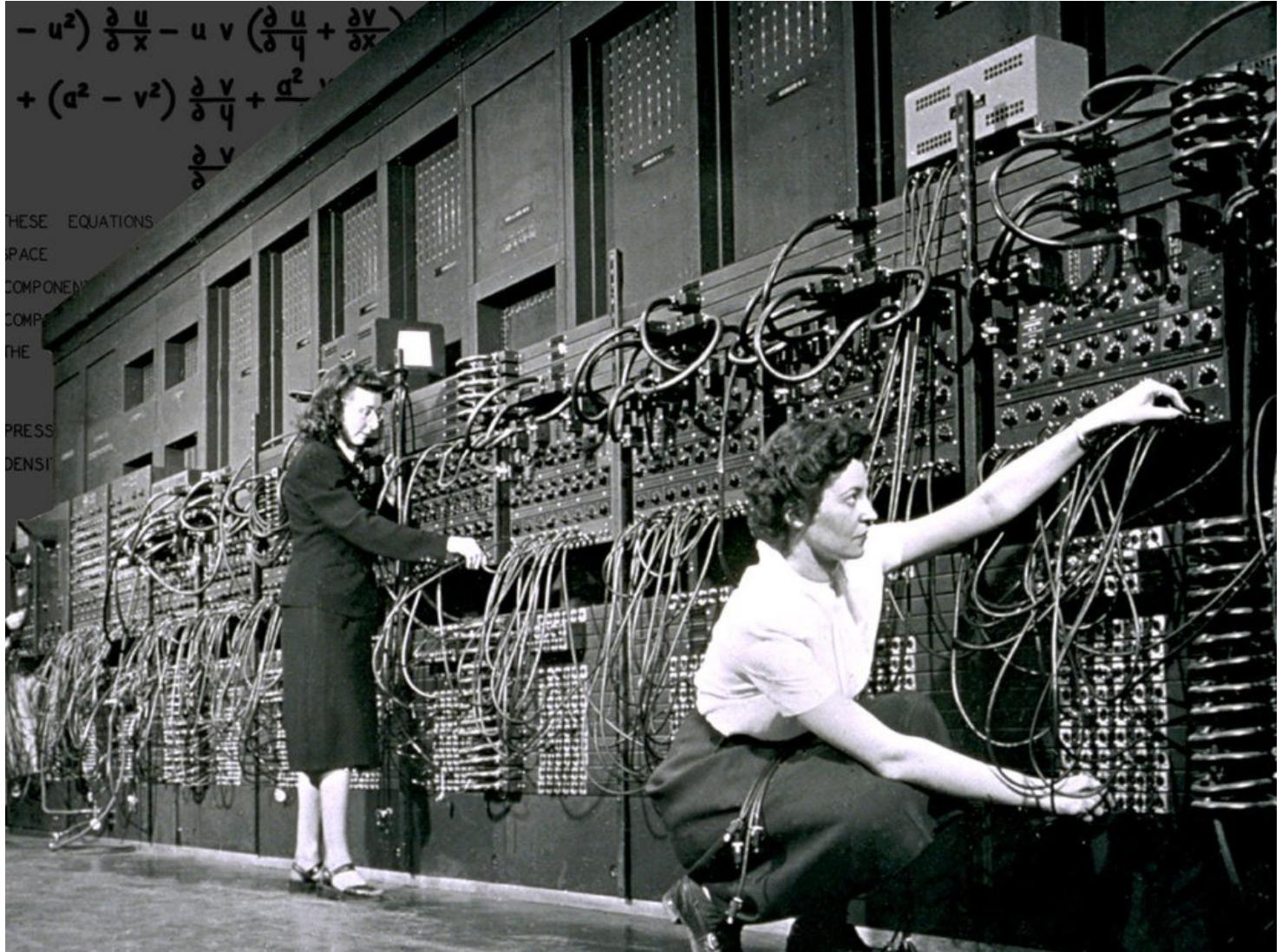
COMP

THE

PRESS

DENSI

$$\begin{aligned} & -u^2) \frac{\partial u}{\partial x} - u v \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ & + (a^2 - v^2) \frac{\partial v}{\partial y} + \frac{\partial^2 v}{\partial x^2} \\ & \frac{\partial v}{\partial x} \end{aligned}$$



ENIAC
*First General-Purpose
Electronic Digital Computer*
1945

A Decidable Problem

- Consider the following problem:

Given two regular expressions R_1 and R_2 , determine whether R_1 and R_2 have the same language.

- This problem is indeed decidable.
 - We autograded your regular expressions in Problem Set Seven. The algorithm we used is 100% accurate.
- **Theorem:** There is no algorithm for solving this problem whose runtime is $O(2^{m+n})$, where m and n are the lengths of the input regular expressions.

The Limits of Decidability

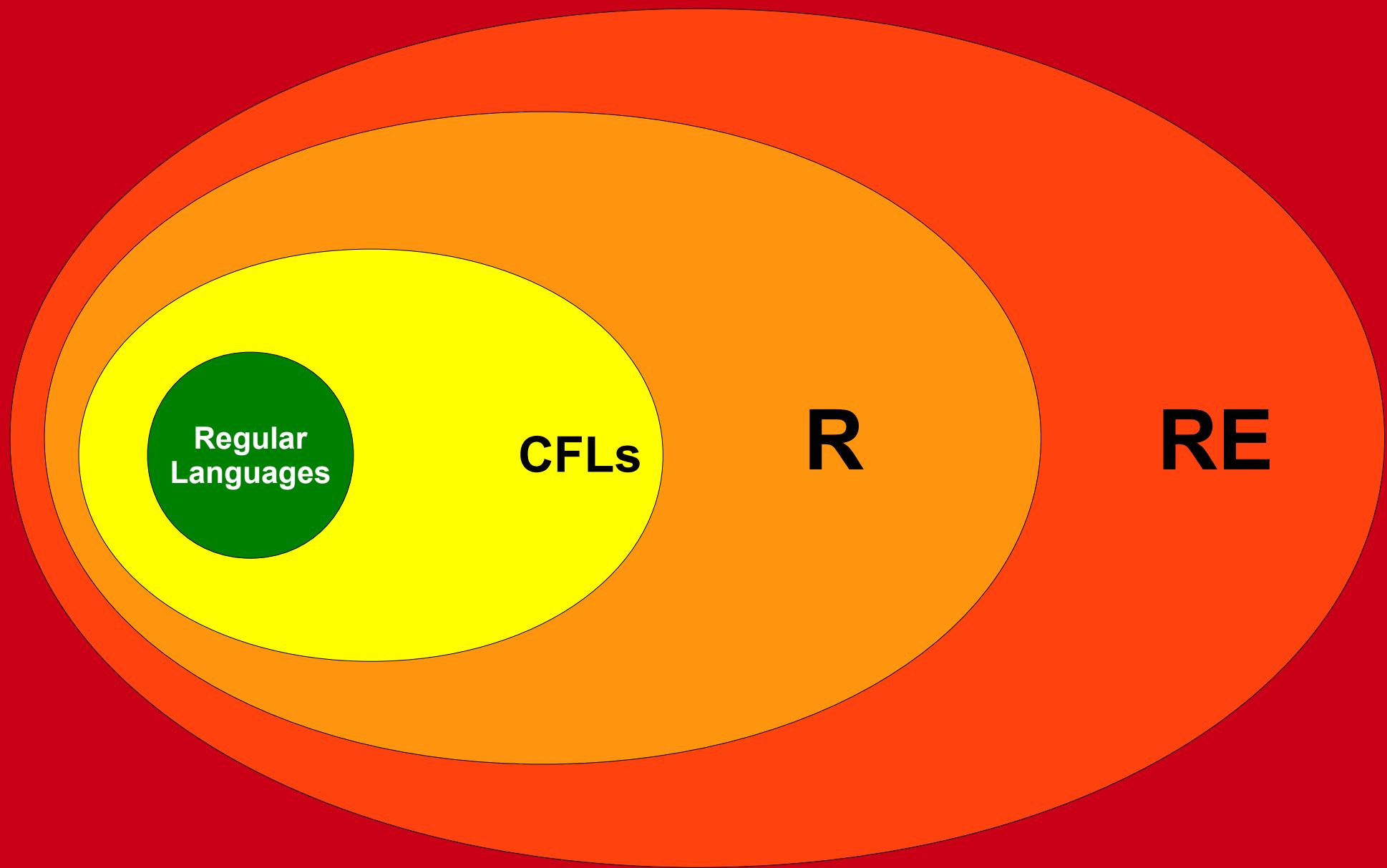
- The fact that a problem is decidable does not mean that it is *feasibly* decidable.
- In **computability theory**, we ask the question
What problems can be solved by a computer?
- In **complexity theory**, we ask the question
What problems can be solved **efficiently** by a computer?
- In the remainder of this course, we will explore this question in more detail.

Where We've Been

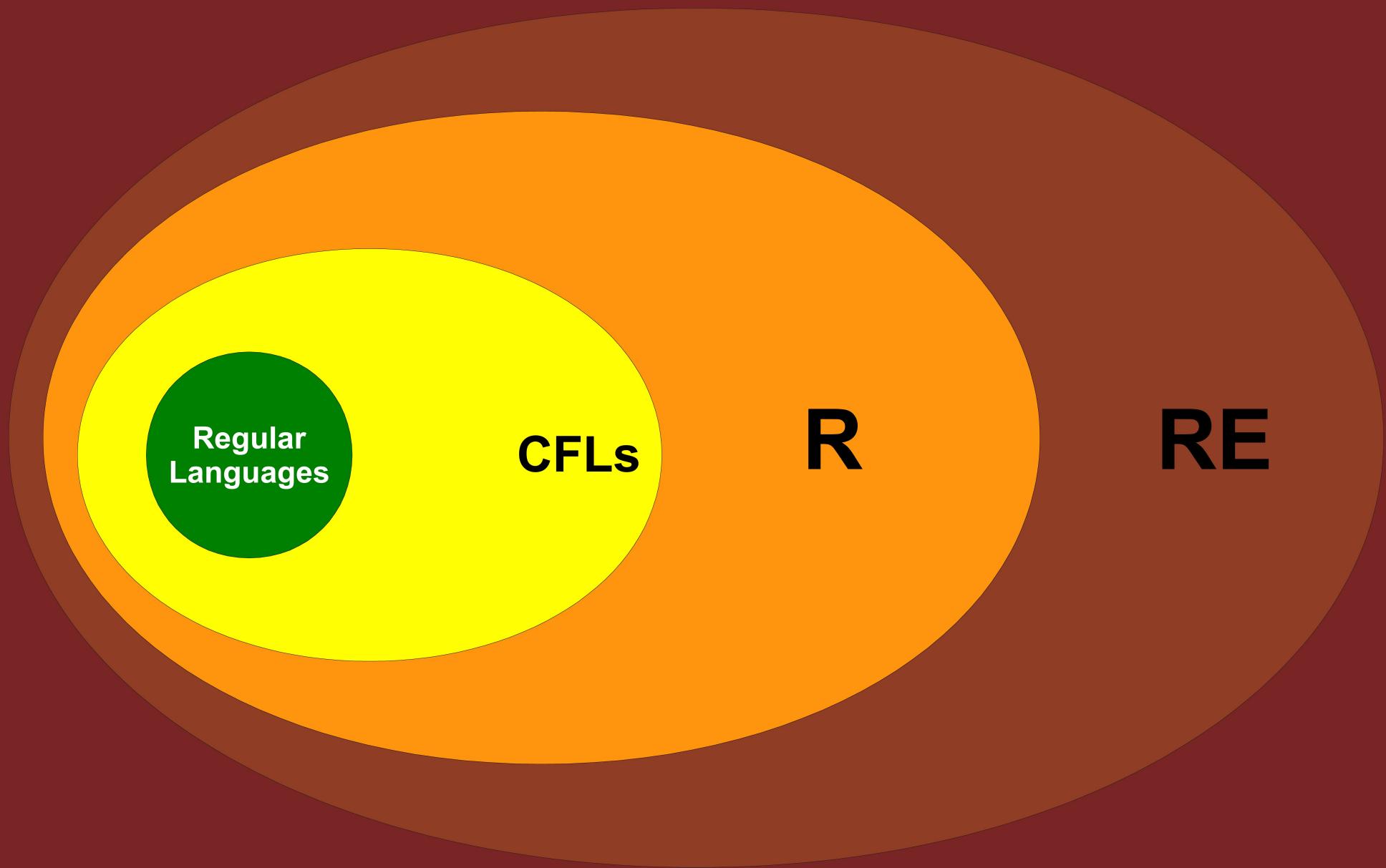
- The class **R** represents problems that can be solved by a computer.
- The class **RE** represents problems where “yes” answers can be verified by a computer.

Where We're Going

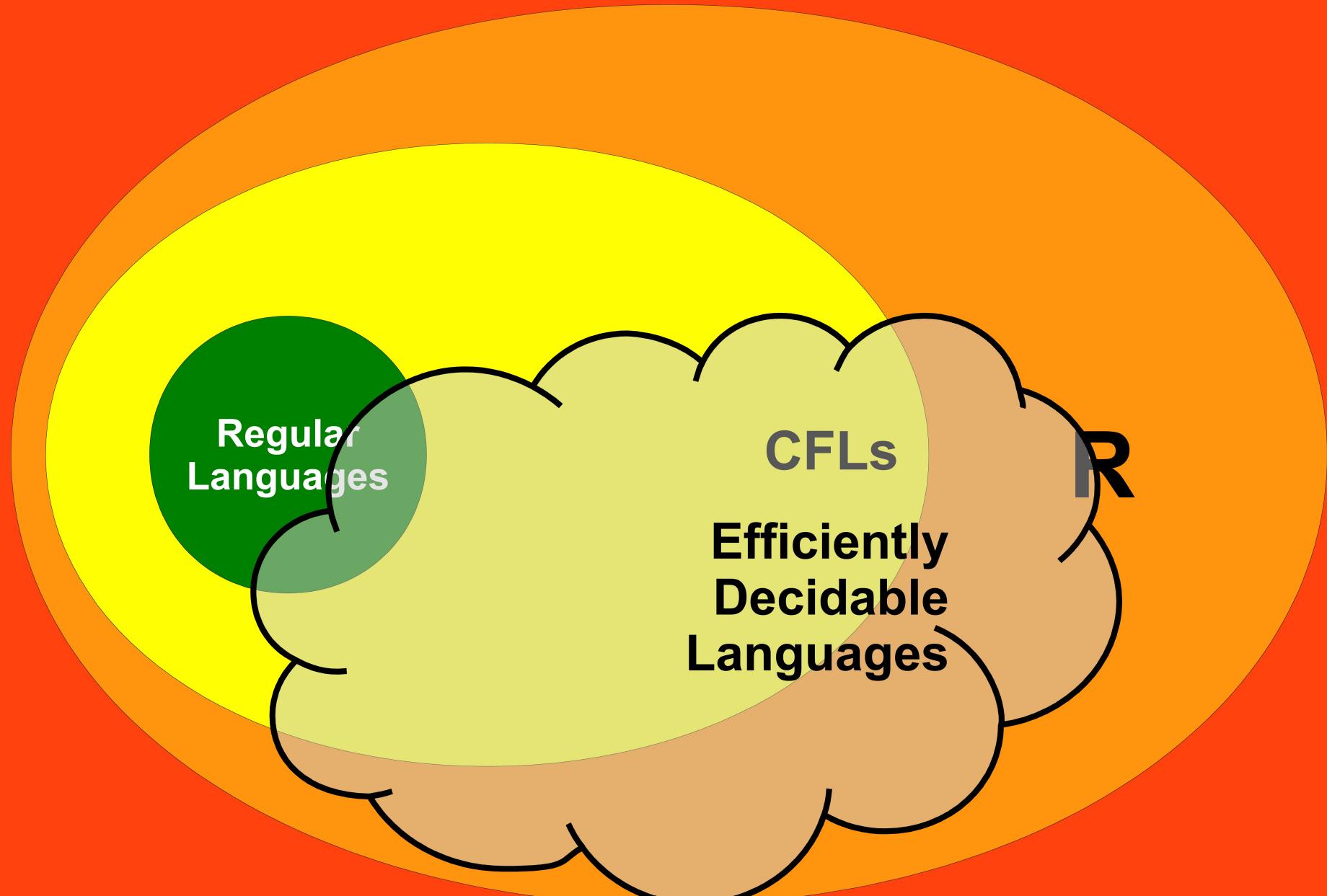
- The class **P** represents problems that can be solved *efficiently* by a computer.
- The class **NP** represents problems where “yes” answers can be verified *efficiently* by a computer.



All Languages



All Languages



Undecidable Languages

The Setup

- In order to study computability, we needed to answer these questions:
 - What is “computation?”
 - What is a “problem?”
 - What does it mean to “solve” a problem?
- To study complexity, we need to answer these questions:
 - What resources do we want our programs to make “efficient” use of?
 - How do we draw the line between “efficient” and “inefficient?”

Correctness

- We have a program written in your Favorite Programming Language that's a decider for some problem.
- What does it mean for this program to be correct?

Go to
PollEv.com/cs103spr25

Efficiency

- We have a program written in your Favorite Programming Language that's a decider for some problem.
- What aspect of that program might quantify “efficiency?”
 - The number of lines of code in the program.
 - How deeply-nested the loops or recursion in the program are.
 - How much time it takes for the program to solve the problem.
 - How much memory it takes for the program to solve the problem.
 - How much power it takes for the program to solve the problem.
 - How much network communication it takes for the program to solve the problem.
 - ...

Efficiency

- We have a program written in your Favorite Programming Language that's a decider for some problem.
- What aspect of that program might quantify “efficiency?”
 - The number of lines of code in the program.
 - How deeply-nested the loops or recursion in the program are.
 - **How much time it takes for the program to solve the problem.**
 - How much memory it takes for the program to solve the problem.
 - How much power it takes for the program to solve the problem.
 - How much network communication it takes for the program to solve the problem.
 - ...

What is an efficient algorithm?

Let's explore some problems and solutions and see what we notice!

A Common Pattern: Searching Finite Spaces

- Many decidable problems can be solved by searching over a large but finite space of possible options.
- Searching this space might take a staggeringly long time, but only finite time.
- From a decidability perspective, this is totally fine.
- From a complexity perspective, this may be totally unacceptable.

A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

Goal: Find the length of the longest increasing subsequence of this sequence.

A Sample Problem

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

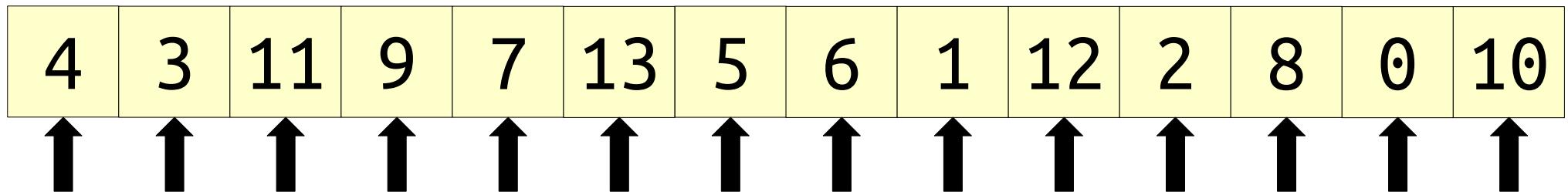
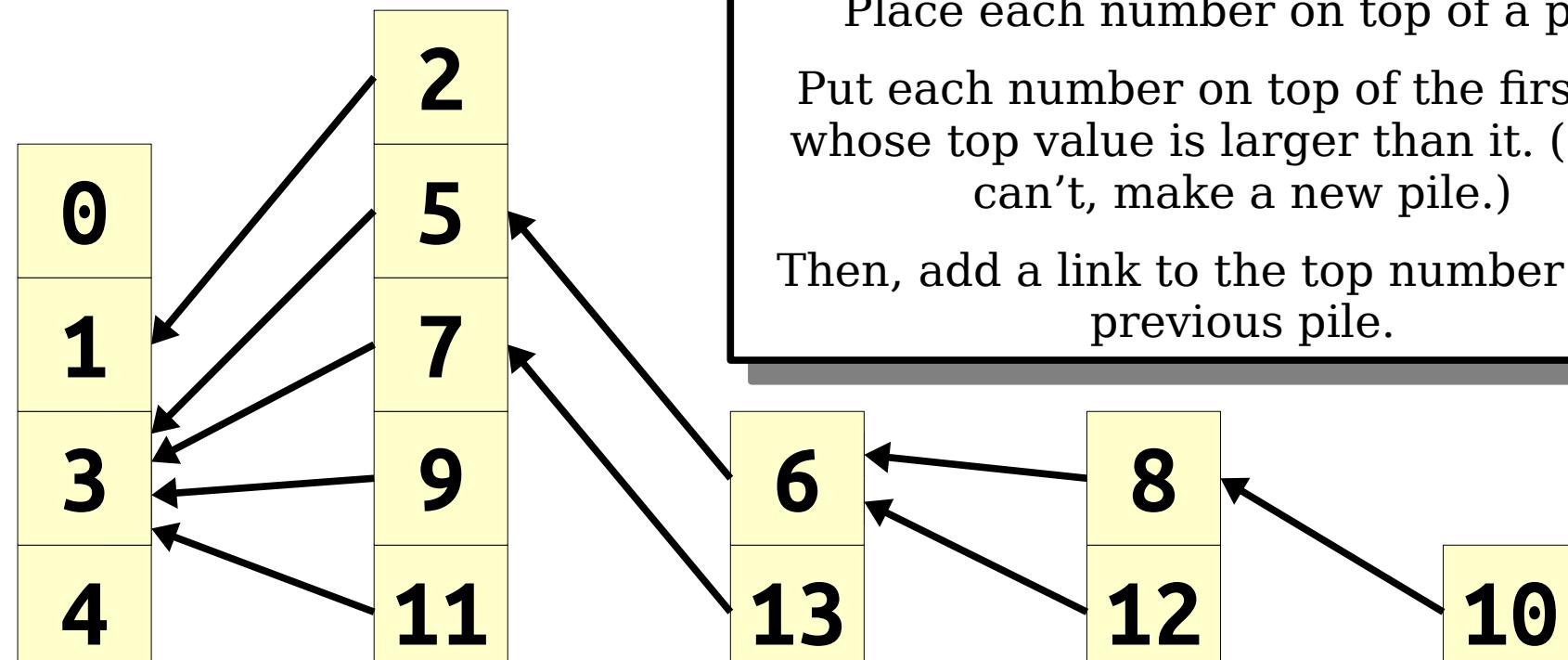
Goal: Find the length of the longest increasing subsequence of this sequence.

Longest Increasing Subsequences

- **One possible algorithm:** try all subsequences, find the longest one that's increasing, and return that.
- There are 2^n subsequences of an array of length n .
 - (Each subset of the elements defines a subsequence.)
- Checking all of them to find the longest increasing subsequence will take time $O(n \cdot 2^n)$.
- **Fact:** the age of the universe is about 4.3×10^{26} nanoseconds. That's about 2^{85} nanoseconds.
- Practically speaking, this algorithm doesn't terminate if you give it an input of size 100 or more.

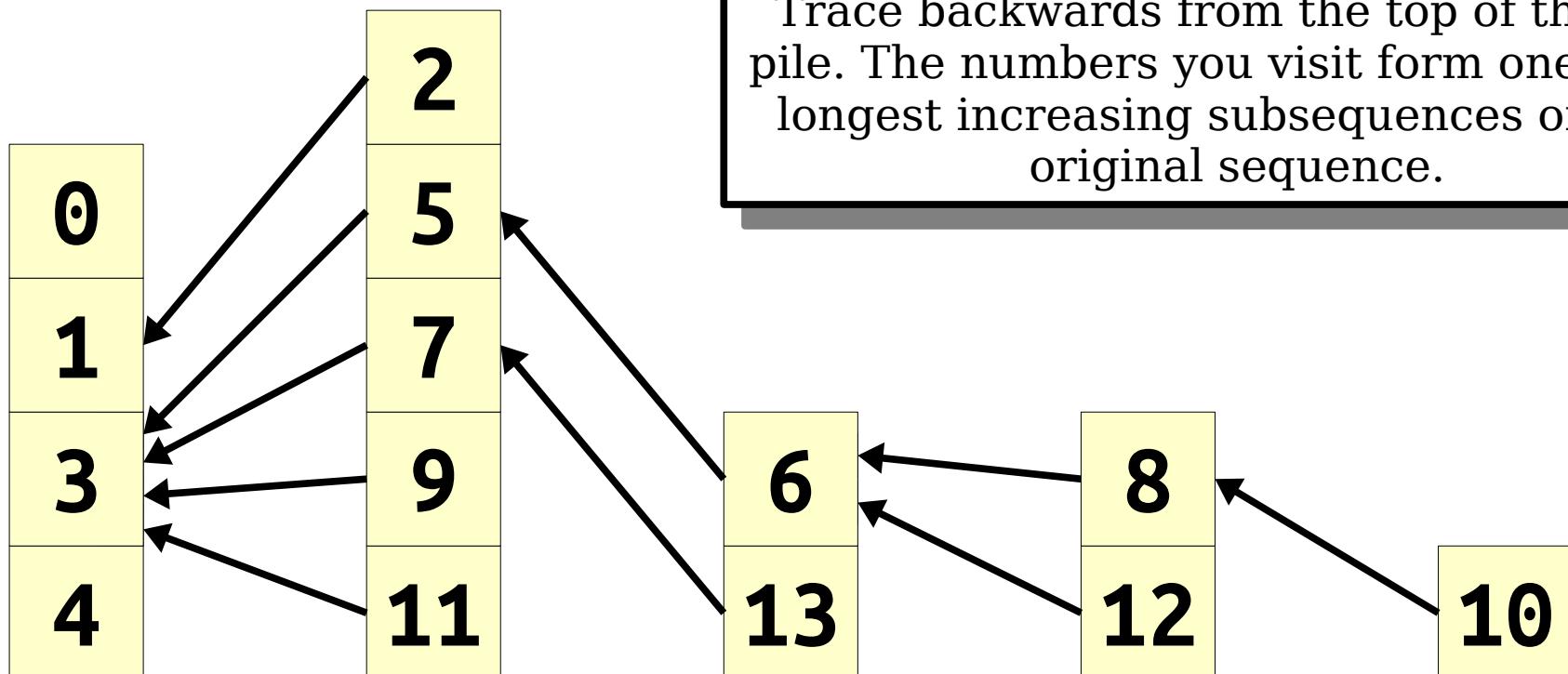
A Different Approach

Patience Sorting



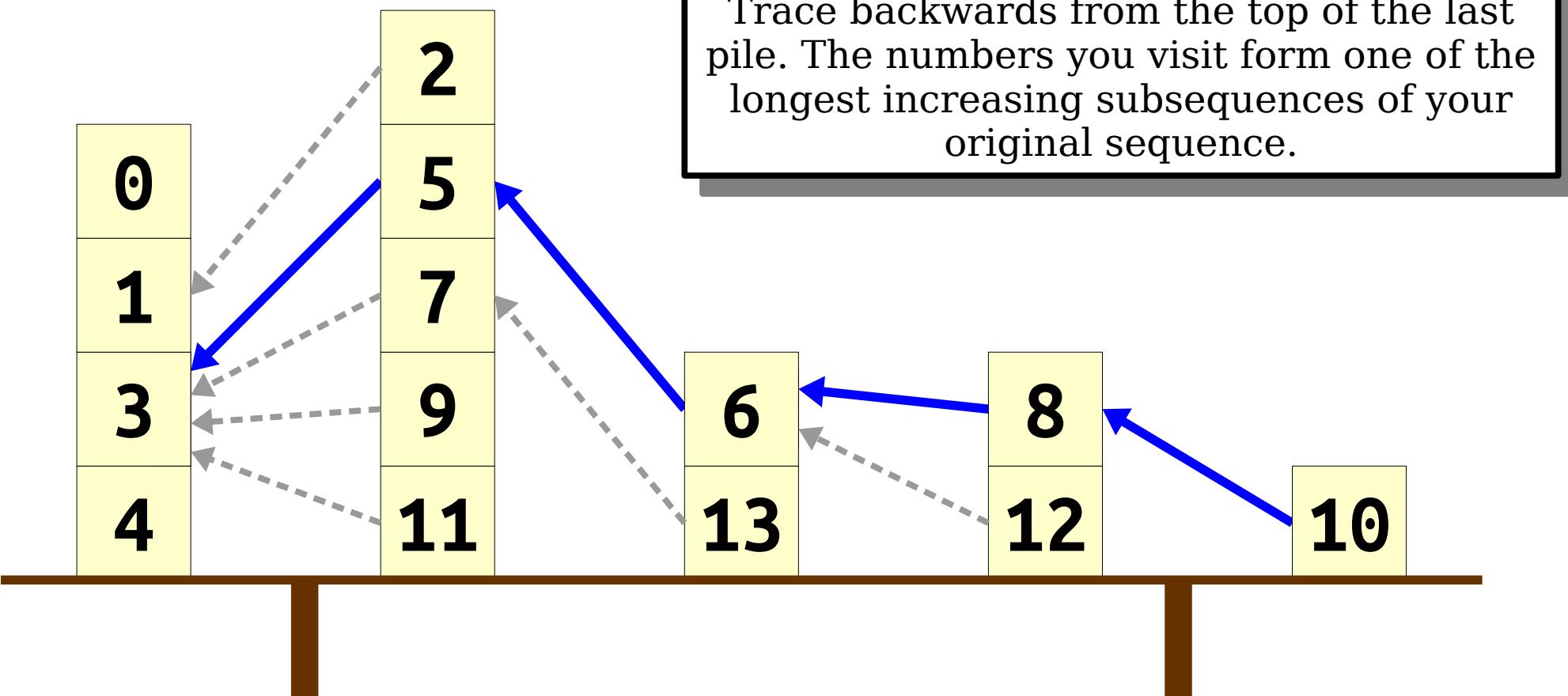
Patience Sorting

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----



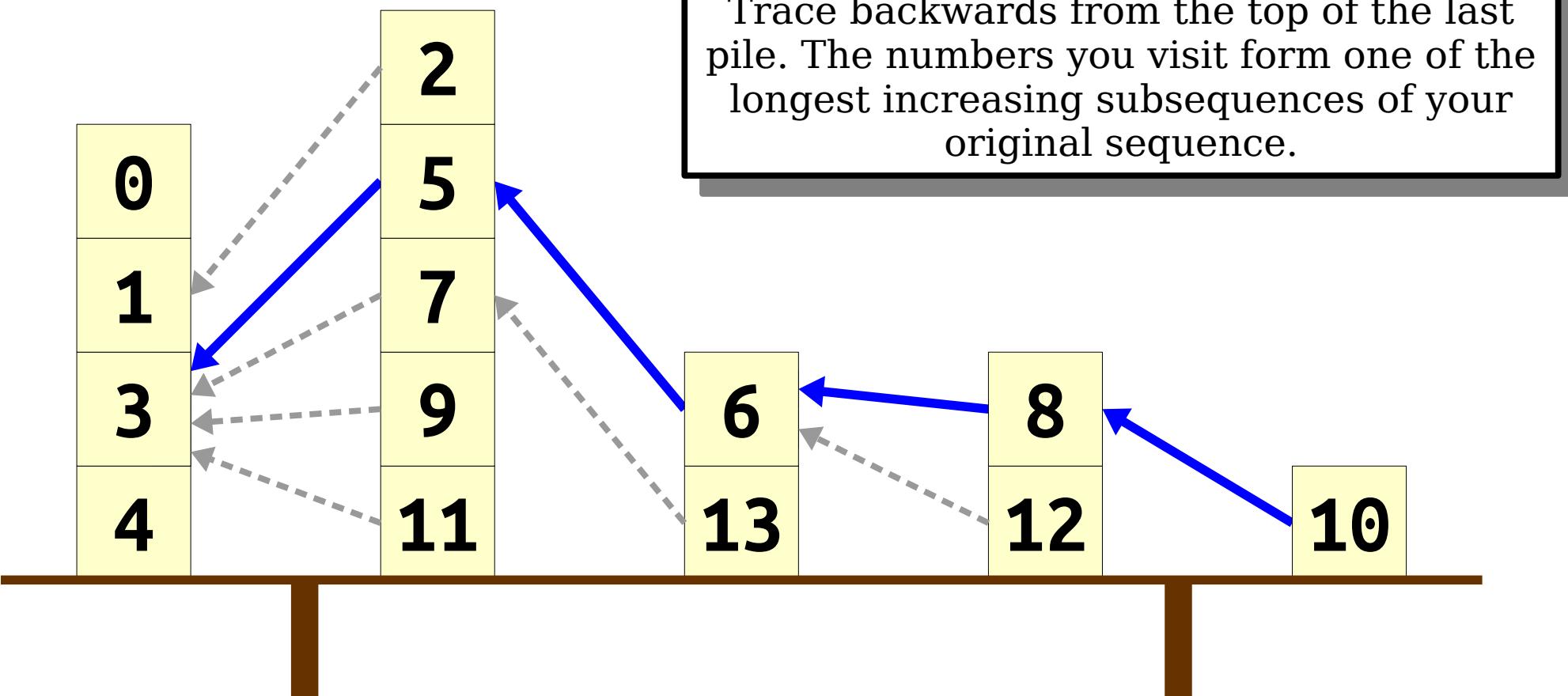
Patience Sorting

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----



Patience Sorting

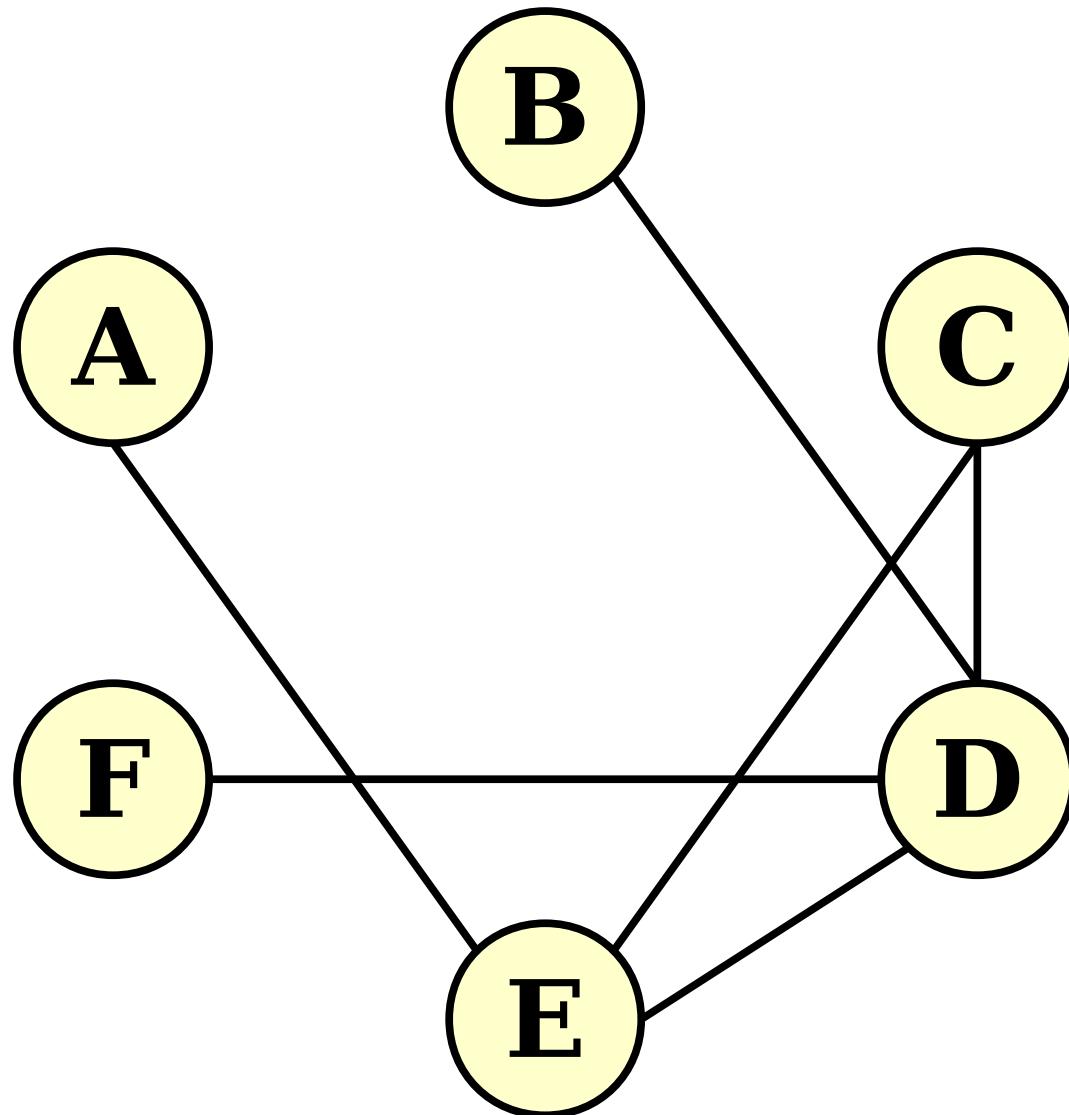
4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----



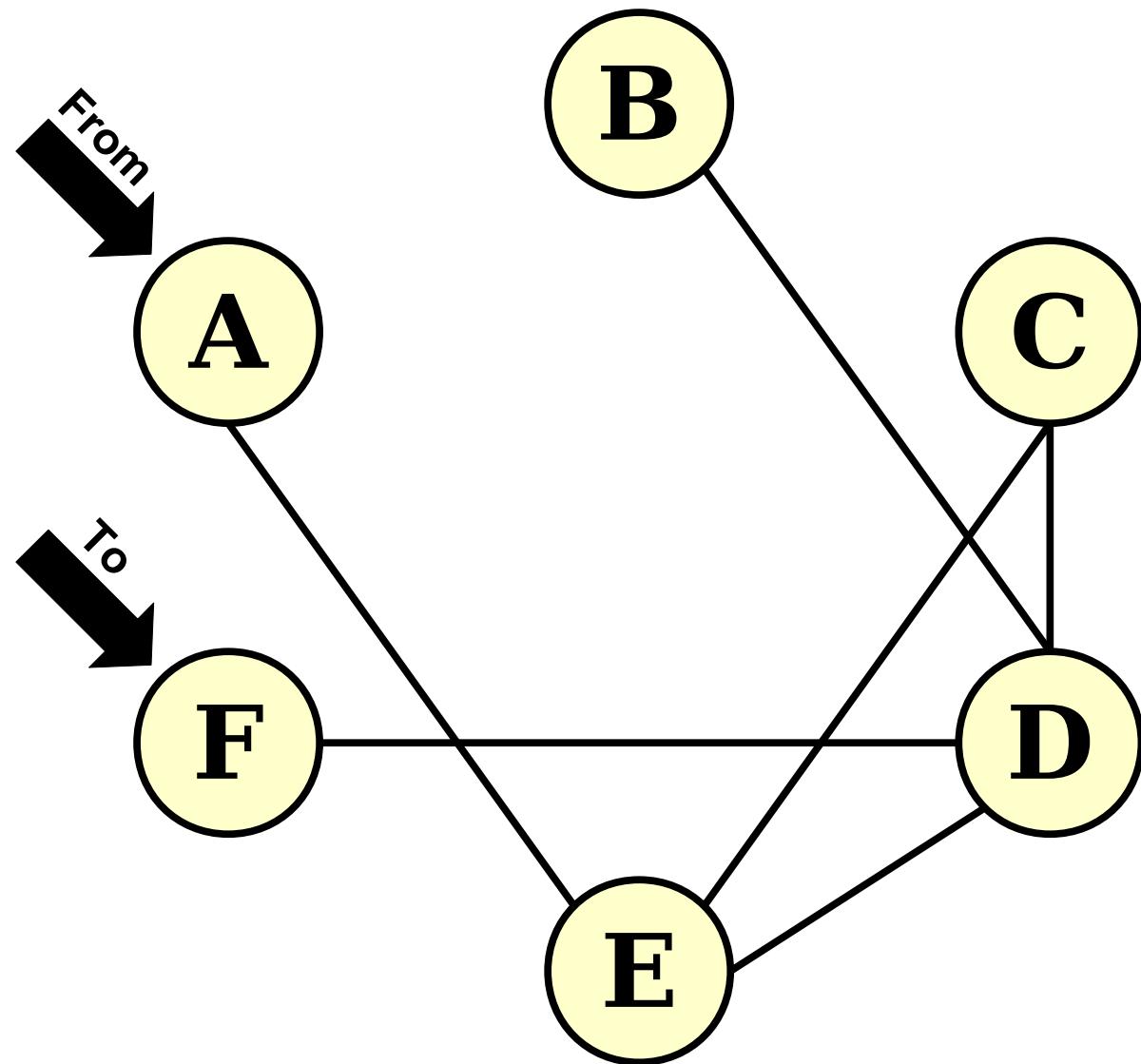
Longest Increasing Subsequences

- **Theorem:** There is an algorithm that can find the longest increasing subsequence of an array in time $O(n^2)$.
 - It's the previous **patience sorting** algorithm, with some clever implementation tricks.
- This algorithm works by exploiting particular aspects of how longest increasing subsequences are constructed. It's not immediately obvious that it works correctly.

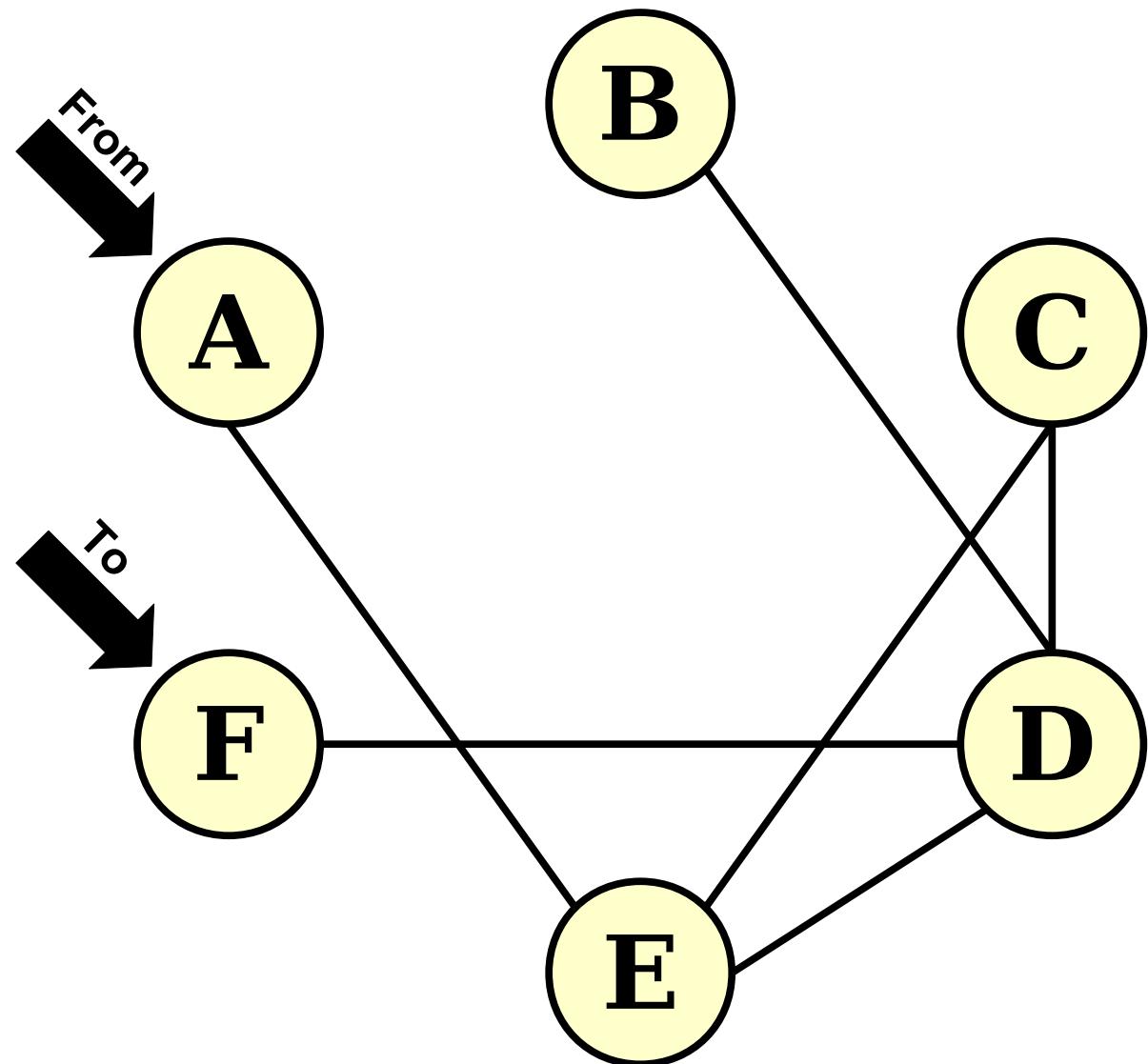
Another Problem



Another Problem



Another Problem



Goal: Determine the length of the shortest path from **F** to **A** in this graph.

Shortest Paths

- It is possible to find the shortest path in a graph by listing off all sequences of nodes in the graph in ascending order of length and finding the first that's a path.
- This takes time $O(n \cdot n!)$ in an n -node graph.
- For reference: $29!$ nanoseconds is longer than the lifetime of the universe.

Shortest Paths

- **Pop Quiz!** How else could we find a shortest path?

Shortest Paths

- **Theorem:** It's possible to find the shortest path between two nodes in an n -node, m -edge graph in time $O(m + n)$.
- **Proof idea:** Use breadth-first search!
- This scales nicely!
- The algorithm is a bit nuanced. It uses some specific properties of shortest paths and the proof of correctness is nontrivial.

For Comparison

- *Longest increasing subsequence:*
 - Naive: $O(n \cdot 2^n)$
 - Fast: $O(n^2)$
- *Shortest path problem:*
 - Naive: $O(n \cdot n!)$
 - Fast: $O(n + m)$.

Defining Efficiency

- When dealing with problems that search for the “best” object of some sort, there are often at least exponentially many possible options.
- Brute-force solutions tend to take at least exponential time to complete.
- Clever algorithms often run in time $O(n)$, or $O(n^2)$, or $O(n^3)$, etc.

Polynomials and Exponentials

- An algorithm runs in ***polynomial time*** if its runtime is some polynomial in n .
 - That is, time $O(n^k)$ for some constant k .
- Polynomial functions “scale well.”
 - Small changes to the size of the input do not typically induce enormous changes in the overall runtime.
- Exponential functions scale terribly.
 - Small changes to the size of the input induce huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be ***decided efficiently*** if there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if it can be decided in time $O(n^k)$ for some $k \in \mathbb{N}$.

Like the Church-Turing thesis, this is ***not*** a theorem!

It's an assumption about the nature of efficient computation, and it is somewhat controversial.

The Cobham-Edmonds Thesis

Which of the following are considered efficient runtimes?

1 $n^2 - 3n + 17$

2 $n \log n$

3 $n^{1,000,000,000}$

4 n^n

5 $n!$

6 2^n

7 1.0000001^n

8 10^{500}

Go to
PollEv.com/cs103spr25

The Cobham-Edmonds Thesis

Which of the following are considered efficient runtimes?

1	$n^2 - 3n + 17$	☒	This is a polynomial in n .
2	$n \log n$	☒	Bounded by n^2 .
3	$n^{1,000,000,000}$	☒	This is a polynomial in n .
4	n^n	✗	Eventually bigger than n^k for all k .
5	$n!$	✗	Eventually bigger than n^k for all k .
6	2^n	✗	Eventually bigger than n^k for all k .
7	1.0000001^n	✗	Eventually bigger than n^k for all k .
8	10^{500}	☒	$10^{500} = 10^{500} n^0$ is a polynomial in n .

Why Polynomials?

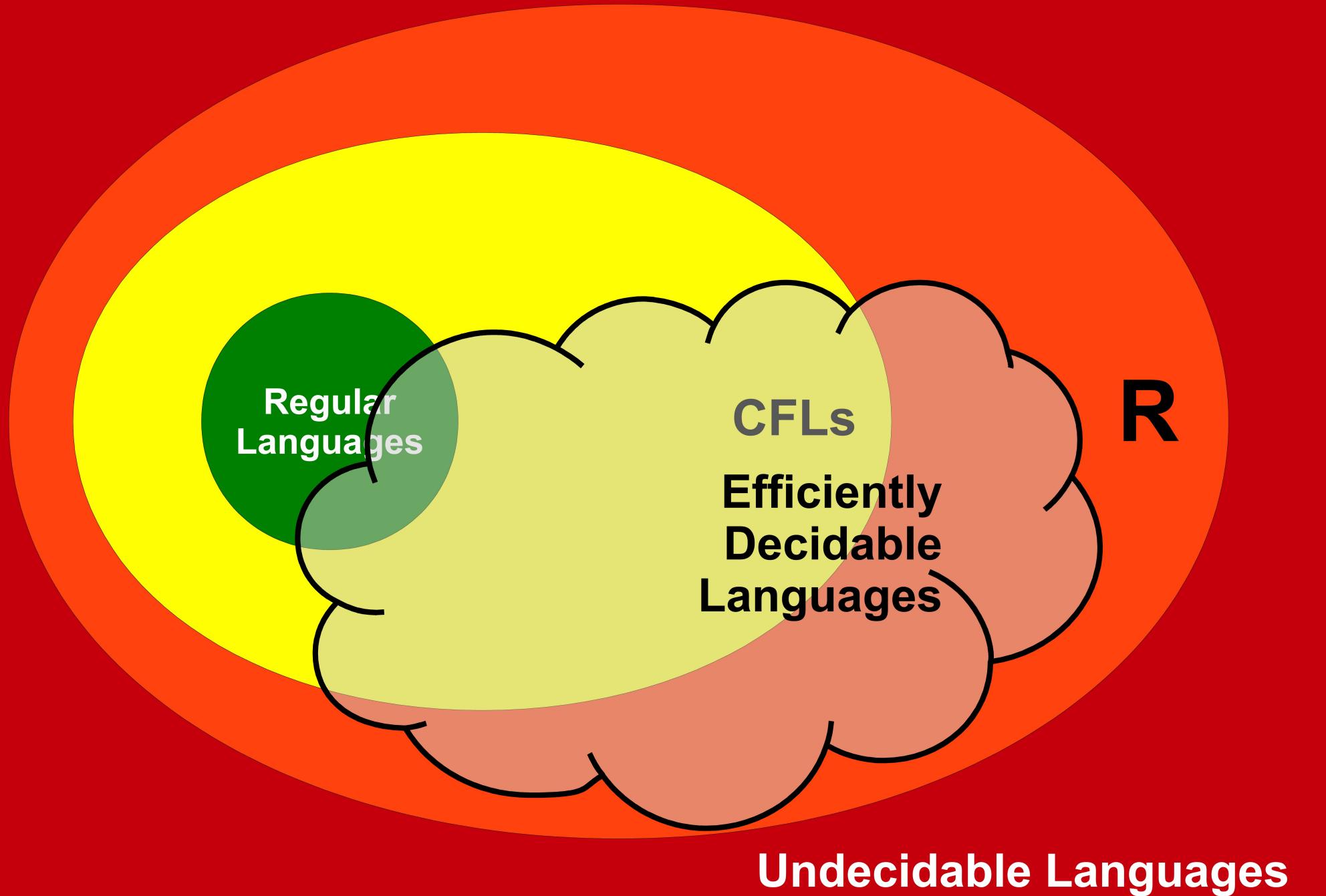
- Polynomial time *somewhat* captures efficient computation, but has a few edge cases.
- However, polynomials have very nice mathematical properties:
 - The sum of two polynomials is a polynomial.
(Running one efficient algorithm, then another, gives an efficient algorithm.)
 - The product of two polynomials is a polynomial.
(Running one efficient algorithm a “reasonable” number of times gives an efficient algorithm.)
 - The *composition* of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to another efficient algorithm gives an efficient algorithm.)

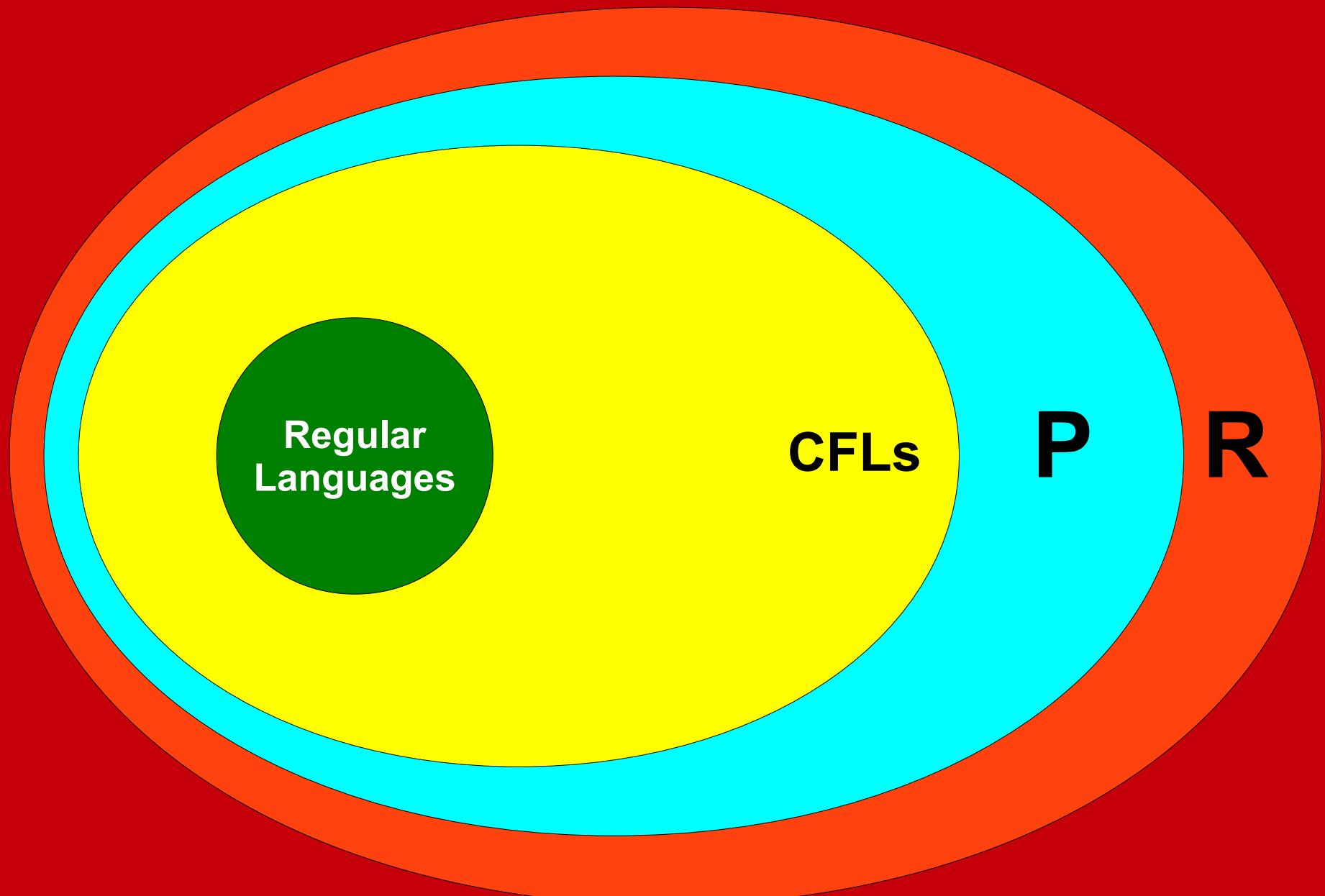
The Complexity Class **P**

- The **complexity class P** (for **polynomial** time) contains all problems that can be solved in polynomial time.
- Formally:
$$\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$$
- Assuming the Cobham-Edmonds thesis, a language is in **P** if it can be decided efficiently.

Examples of Problems in **P**

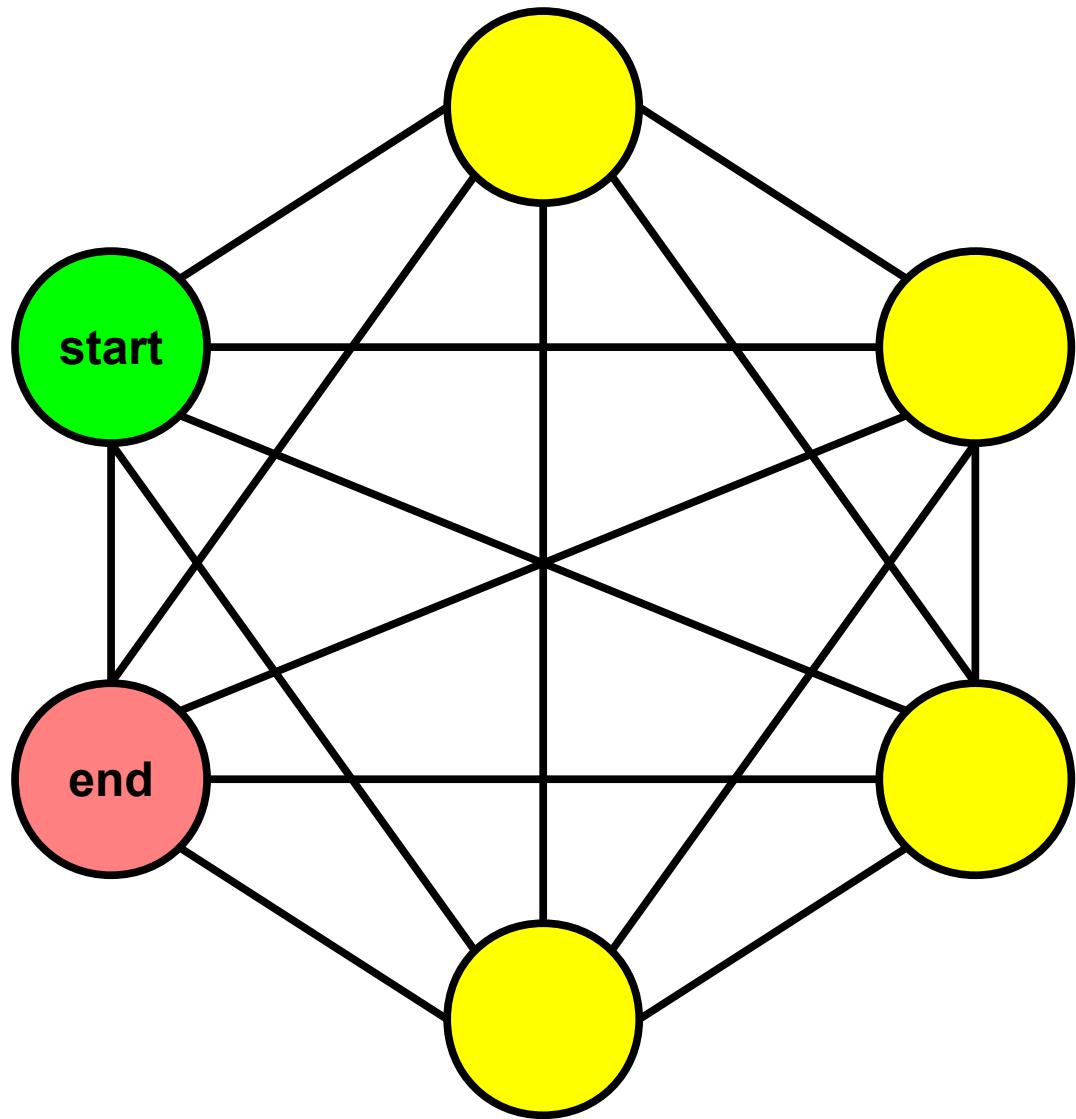
- All regular languages are in **P**.
 - All have linear-time TMs.
- All CFLs are in **P**.
 - Requires a more nuanced argument (the *CYK algorithm* or *Earley's algorithm*).
- And a *ton* of other problems are in **P** as well.
 - Curious? Take CS161!





Undecidable Languages

What *can't* you do in polynomial time?



How many paths are there from the start node to the end node?

How many subsets
of this set are
there?

An Interesting Observation

- There are (at least) exponentially many objects of each of the preceding types.
- However, each of those objects is not very large.
 - Each simple path has length no longer than the number of nodes in the graph.
 - Each subset of a set has no more elements than the original set.
- This brings us to our next topic...

What if you need to search a large space for a single object?

Verifiers - Again

		7		6		1		
					3		5	2
3			1		5	9		7
6		5		3		8		9
	1					2		
8		2		1		5		4
1		3	2		7			8
5	7		4					
		4		8		7		

Does this Sudoku problem
have a solution?

Verifiers - Again

2	5	7	9	6	4	1	8	3
4	9	1	8	7	3	6	5	2
3	8	6	1	2	5	9	4	7
6	4	5	7	3	2	8	1	9
7	1	9	5	4	8	3	2	6
8	3	2	6	1	9	5	7	4
1	6	3	2	5	7	4	9	8
5	7	8	4	9	6	2	3	1
9	2	4	3	8	1	7	6	5

Does this Sudoku problem
have a solution?

Verifiers - Again

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

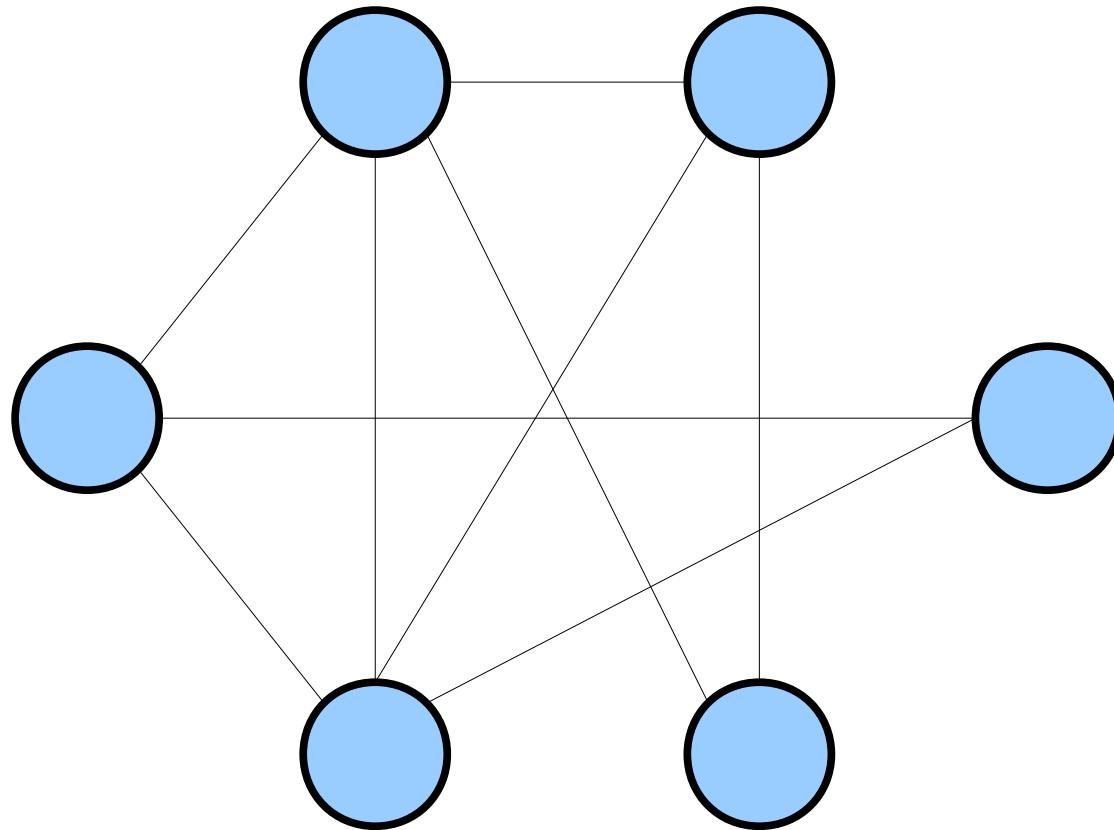
Is there an ascending subsequence of length at least 5?

Verifiers - Again

4	3	11	9	7	13	5	6	1	12	2	8	0	10
---	---	----	---	---	----	---	---	---	----	---	---	---	----

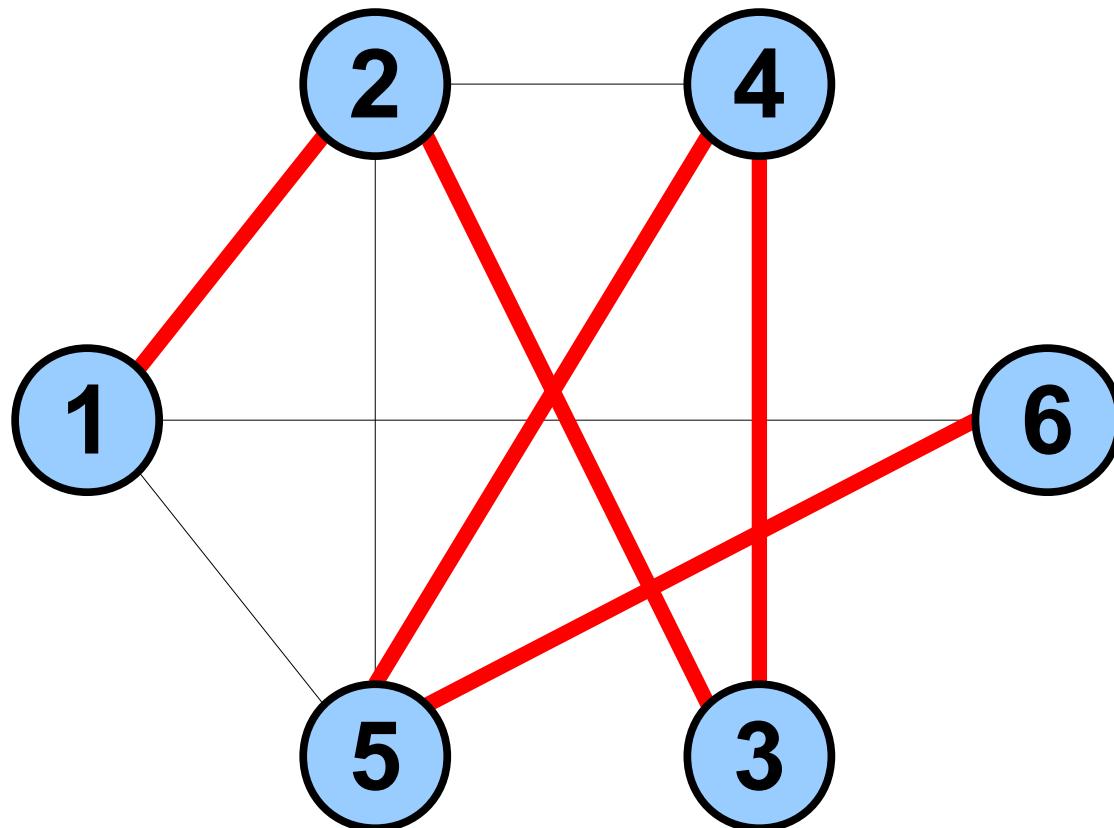
Is there an ascending subsequence of length at least 5?

Verifiers - Again



Is there a path that goes through
every node exactly once?

Verifiers - Again



Is there a path that goes through
every node exactly once?

Verifiers

- Recall that a **verifier** for L is a TM V such that
 - V halts on all inputs.
 - $w \in L \iff \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle.$

Polynomial-Time Verifiers

- A ***polynomial-time verifier*** for L is a TM V such that
 - V halts on all inputs.
 - $w \in L \leftrightarrow \exists c \in \Sigma^*. V \text{ accepts } \langle w, c \rangle.$
 - V runs “efficiently” (its runtime is $O(|w|^k)$ for some $k \in \mathbb{N}$).
 - All strings in L have “short” certificates (their lengths are $O(|w|^r)$ for some $r \in \mathbb{N}$).

The Complexity Class **NP**

- The complexity class **NP** (*nondeterministic polynomial time*) contains all problems that can be verified in polynomial time.
- Formally:

$$\mathbf{NP} = \{ L \mid \text{There is a polynomial-time verifier for } L \}$$

- The name **NP** comes from another way of characterizing **NP**. If you introduce *nondeterministic Turing machines* and appropriately define “polynomial time,” then **NP** is the set of problems that an NTM can solve in polynomial time.
- **Useful fact:** $\mathbf{NP} \subseteq \mathbf{R}$.
 - **Proof idea:** If $L \in \mathbf{NP}$, all strings in L have “short” certificates. Therefore, we can just try all possible “short” certificates and see if any of them work. (Showing **NP** is a strict subset of **R** requires some more advanced techniques.)

P = { L | there is a polynomial-time decider for L }

NP = { L | there is a polynomial-time verifier for L }

R = { L | there is a ~~polynomial-time~~ decider for L }

RE = { L | there is a ~~polynomial-time~~ verifier for L }

We know that **R** \neq **RE**.

So does that mean **P** \neq **NP**?

Time-Out for Announcements!

Please evaluate this course in Axess.
Your comments really make a difference.

Final Exam Logistics

- Our final exam is on **, Saturday, June 7th** from **8:30AM - 11:30AM**.
- Everyone should have received an email with their exam location
 - Seat assignments coming later this week
- The final exam is covers all psets and lectures.
- The format is the same as the midterms, a mix of short-answer questions and written proofs.
- Like the midterms, it's closed-book, closed-computer, and limited-note. You can bring one double-sided 8.5" × 11" notes sheet with you.

Review Session

- 2-3pm Thursday
- STLC115

Back to CS103!

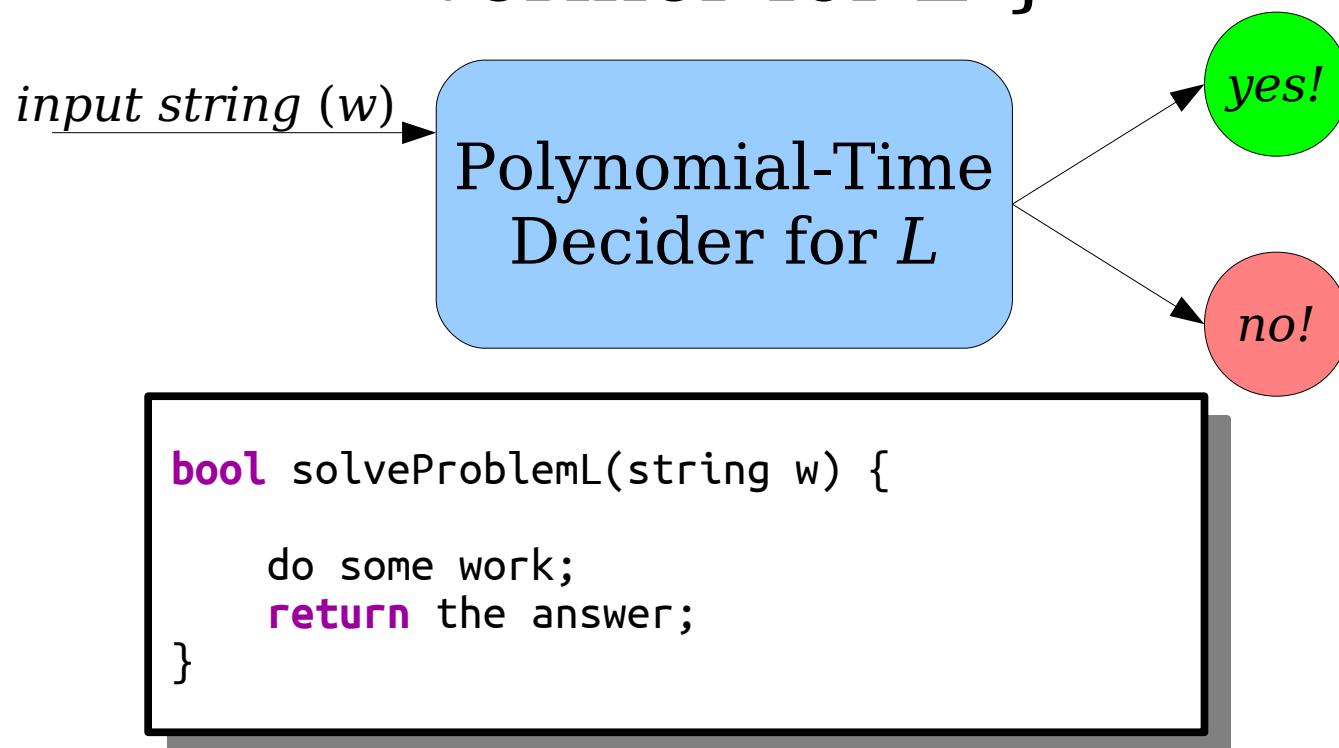
And now...

The
Biggest Question
in
Theoretical Computer Science

P'PNP

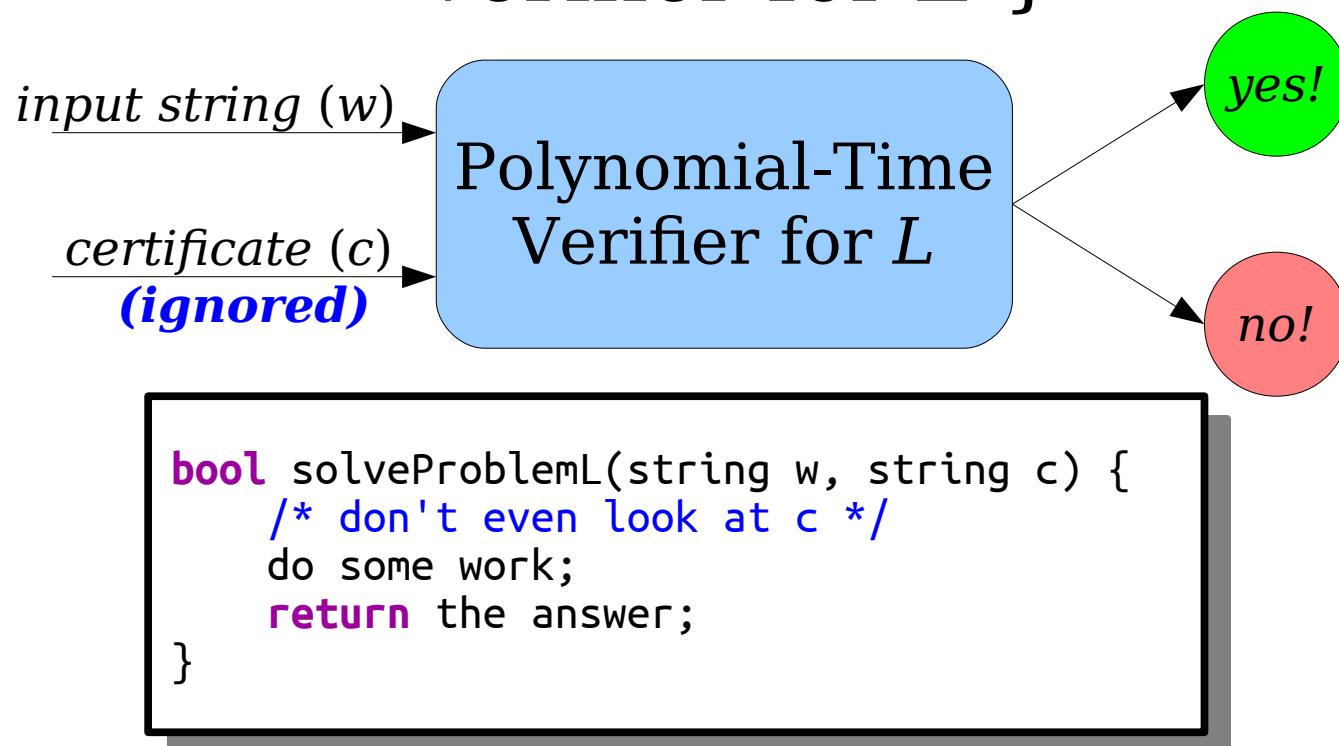
P = { L | There is a polynomial-time decider for L }

NP = { L | There is a polynomial-time verifier for L }



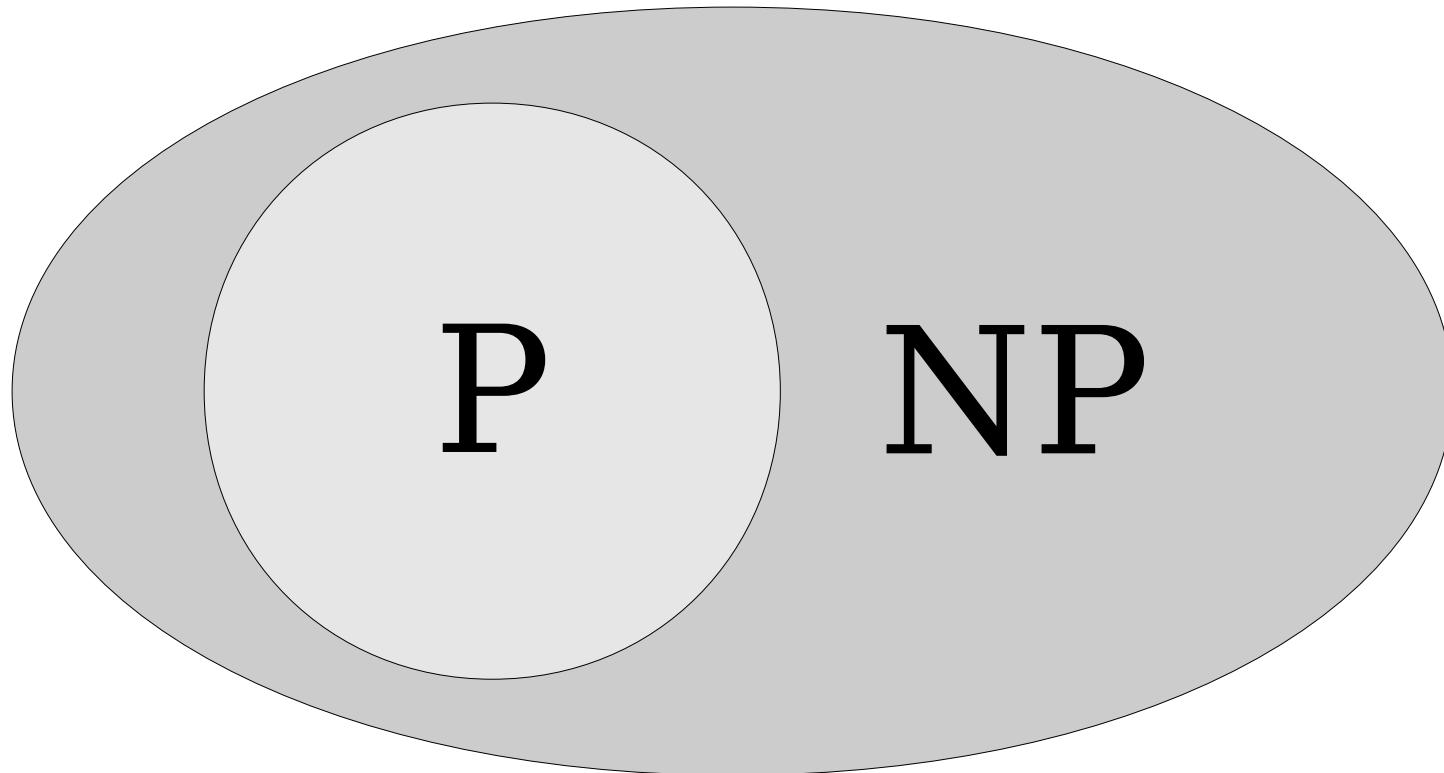
$\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}$

$\mathbf{NP} = \{ L \mid \text{There is a polynomial-time verifier for } L \}$

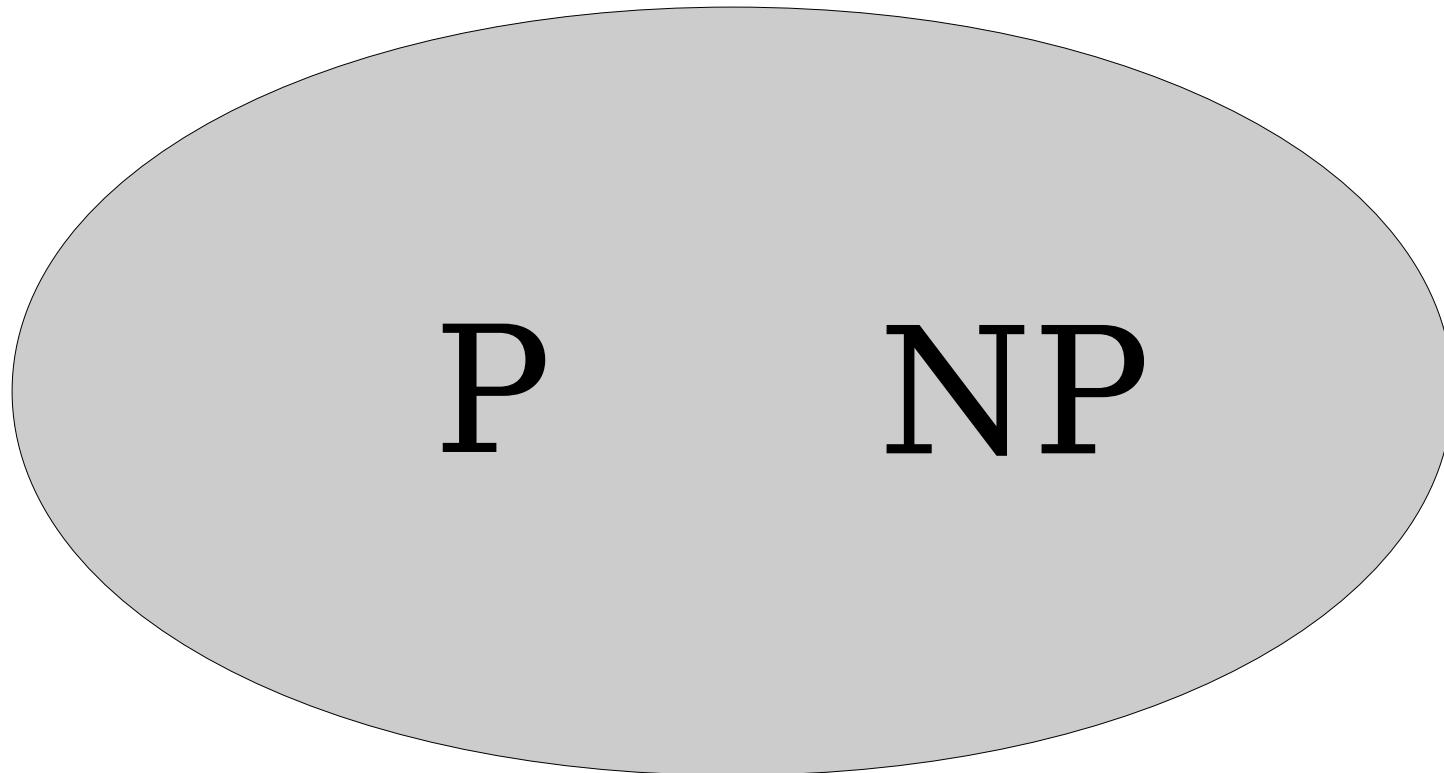


$\mathbf{P} \subseteq \mathbf{NP}$

Which Picture is Correct?



Which Picture is Correct?



P 'P**NP**

- The **P** 'P**NP** question is the most important open question in theoretical computer science.
- With the verifier definition of **NP**, one way of phrasing this question is

*If a solution to a problem can be **checked** efficiently, can that problem also be **solved** efficiently?*

- An answer either way will give fundamental insights into the nature of computation.

Why This Matters

- The following problems are known to be efficiently verifiable, but have no known efficient solutions:
 - Determining whether an electrical grid can be built to link up some number of houses for some price (Steiner tree problem).
 - Determining whether a simple DNA strand exists that multiple gene sequences could be a part of (shortest common supersequence).
 - Determining the best way to assign hardware resources in a compiler (optimal register allocation).
 - Determining the best way to distribute tasks to multiple workers to minimize completion time (job scheduling).
 - ***And many more.***
- If $\mathbf{P} = \mathbf{NP}$, ***all*** of these problems have efficient solutions.
- If $\mathbf{P} \neq \mathbf{NP}$, ***none*** of these problems have efficient solutions.

Why This Matters

- If $\mathbf{P} = \mathbf{NP}$:
 - A huge number of seemingly difficult problems could be solved efficiently.
 - Our capacity to solve many problems will scale well with the size of the problems we want to solve.
- If $\mathbf{P} \neq \mathbf{NP}$:
 - Enormous computational power would be required to solve many seemingly easy tasks.
 - Our capacity to solve problems will fail to keep up with our curiosity.

What We Know

- Resolving $\mathbf{P} \neq \mathbf{NP}$ has proven ***extremely difficult***.
- In the past 50 years:
 - Not a single correct proof either way has been found.
 - Many types of proofs have been shown to be insufficiently powerful to determine whether $\mathbf{P} \neq \mathbf{NP}$.
 - A majority of computer scientists believe $\mathbf{P} \neq \mathbf{NP}$, but it isn't an overwhelming majority.
- Interesting read: Interviews with leading thinkers about $\mathbf{P} \neq \mathbf{NP}$:
 - <https://www.cs.umd.edu/~gasarch/papers/poll.pdf>

The Million-Dollar Question

CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered a ***\$1,000,000 prize*** to anyone who proves or disproves **$P = NP$** .

“My hunch is that [P ‘PNP] will be solved by a young researcher who is not encumbered by too much conventional wisdom about how to attack the problem.”

– Prof. Richard Karp

(The guy who first popularized the P ‘PNP problem.)

What do we know about **P** 'P**NP**?

Adapting our Techniques

P = { L | there is a polynomial-time
decider for L }

NP = { L | there is a polynomial-time
verifier for L }

R = { L | there is a ~~polynomial-time~~ decider for L }

RE = { L | there is a ~~polynomial-time~~ verifier for L }

We know that **R** \neq **RE**.

So does that mean **P** \neq **NP**?

A Problem

- The **R** and **RE** languages correspond to problems that can be decided and verified, *period*, without any time bounds.
- To reason about what's in **R** and what's in **RE**, we used two key techniques:
 - **Universality**: TMs can simulate other TMs.
 - **Self-Reference**: TMs can get their own source code.
- Why can't we just do that for **P** and **NP**?

Theorem (Baker-Gill-Solovay): Any proof that purely relies on universality and self-reference cannot resolve $\mathbf{P} \neq \mathbf{NP}$.

Proof: Take CS154!

So how *are* we going to
reason about **P** and **NP**?

Next Time

- ***Reducibility***
 - A technique for connecting problems to one another.
- ***NP-Completeness***
 - What are the hardest problems in **NP**?