Complexity Theory

»
—

1R SRR *
p_ 5\

ENIAC
First General-Purpose
Electronic Digital Computer
1945

1936

Alan Turing
On Computable
Numbers

A Decidable Problem

« Consider the following problem:

Given two regular expressions Ri1 and Rz,
determine whether R1 and Rz have the same
language.

« This problem is indeed decidable.

« We autograded your regular expressions in Problem
Set Seven. The algorithm we used is 100% accurate.

« Theorem: There is no algorithm for solving this
problem whose runtime is O(2™*"), where m and n
are the lengths of the input regular expressions.

The Limits of Decidability

The fact that a problem is decidable does not
mean that it is feasibly decidable.

In computability theory, we ask the question
What problems can be solved by a computer?
In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

In the remainder of this course, we will explore
this question in more detalil.

Where We've Been

« The class R represents problems that can be
solved by a computer.

« The class RE represents problems where “yes”
answers can be verified by a computer.

Where We're Going

« The class P represents problems that can be
solved efficiently by a computer.

« The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Regular
Languages

All Languages

Regular
Languages

All Languages

Regulas CFLs

Languajes

Efficiently
Decidable
Languages

Undecidable Languages

The Setup

* In order to study computability, we
needed to answer these questions:

« What is “computation?”
« What is a “problem?”

« What does it mean to “solve” a problem?

« To study complexity, we need to answer
these questions:

« What resources do we want our programs to
make “efficient” use of?

« How do we draw the line between “efficient”
and “inefficient?”

Correctness

« We have a program written in your Favorite Programming
Language that’s a decider for some problem.

« What does it mean for this program to be correct?

Go to
PollEv.com/cs103spr25

Efficiency

« We have a program written in your Favorite Programming
Language that’s a decider for some problem.

« What aspect of that program might quantify “efficiency?”

The number of lines of code in the program.

How deeply-nested the loops or recursion in the program are.
How much time it takes for the program to solve the problem.
How much memory it takes for the program to solve the problem.
How much power it takes for the program to solve the problem.

How much network communication it takes for the program to solve
the problem.

Efficiency

« We have a program written in your Favorite Programming
Language that’s a decider for some problem.

« What aspect of that program might quantify “efficiency?”

The number of lines of code in the program.

How deeply-nested the loops or recursion in the program are.
How much time it takes for the program to solve the problem.
How much memory it takes for the program to solve the problem.
How much power it takes for the program to solve the problem.

How much network communication it takes for the program to solve
the problem.

What is an etficient algorithm?

Let’s explore some problems and
solutions and see what we notice!

A Common Pattern:
Searching Finite Spaces

Many decidable problems can be solved by
searching over a large but finite space of
possible options.

Searching this space might take a staggeringly
long time, but only finite time.

From a decidability perspective, this is totally
fine.

From a complexity perspective, this may be
totally unacceptable.

A Sample Problem

11

S

7

13

5

6 1122 8 0 10

A Sample Problem

11

S

7

13

56 1122 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

11

S

7

13

56 1122 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

12 2 88 o 10

11

Goal: Find the length of
the longest increasing
subsequence of this
sequence.

A Sample Problem

11

9

7 13

56 11228 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Longest Increasing Subsequences

 One possible algorithm: try all subsequences, find
the longest one that's increasing, and return that.

 There are 2" subsequences of an array of length n.
 (Each subset of the elements defines a subsequence.)

« Checking all of them to find the longest increasing
subsequence will take time O(n - 27).

« Fact: the age of the universe is about 4.3 x 102¢
nanoseconds. That's about 28 nanoseconds.

« Practically speaking, this algorithm doesn't terminate if
you give it an input of size 100 or more.

A Different Approach

Patience Sorting

13

5

6 112 2 8 0 10

-

=)

=
-H
=) \O

7
LI |

r111111

S W = O

Put each number on top of the first pile
whose top value is larger than it. (If you

Then, add a link to the top number in the

Place each number on top of a pile.

can’t, make a new pile.)

previous pile.

AN

2

5

7\
9\6
11 13

Patience Sorting

4 3119 7135 6 1122 8 0 10
Trace backwards from the top of the last
2o e pumberssou st fom one o e
0 / 5 original sequence.
1 / 7
g iy :k 6 — 8
“«—
4 11 13 12

Patience Sorting

4 3119 7135 6 1122 8 0 10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your
original sequence.

\6\8

/

O N 0N N

S W = O

11 13 12

Patience Sorting

43119 7 13/5 6 112 2 8 0 10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your
original sequence.

\6\8

/

O N 0N N

S W = O

11 13 12

Longest Increasing Subsequences

« Theorem: There is an algorithm that can find the

longest increasing subsequence of an array in time
O(n?).

« It’s the previous patience sorting algorithm, with
some clever implementation tricks.

« This algorithm works by exploiting particular
aspects of how longest increasing subsequences
are constructed. It's not immediately obvious that
it works correctly.

Another Problem

Another Problem

Another Problem

Goal: Determine the
length of the shortest
path from F to A in
this graph.

Shortest Paths

It is possible to find the shortest path in a
graph by listing off all sequences ot
nodes in the graph in ascending order of
length and finding the first that's a path.

e This takes time O(n - n!) in an n-node
graph.

 For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

 Pop Quiz! How else could we find a
shortest path?

Shortest Paths

« Theorem: It's possible to find the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

 Proof idea: Use breadth-first search!
e This scales nicely!

» The algorithm is a bit nuanced. It uses
some specific properties of shortest
paths and the proof of correctness is
nontrivial.

For Comparison

« Longest increasing * Shortest path
subsequence: problem:

« Naive: O(n - 2") e Naive: O(n - n!)
 Fast: O(n?) « Fast: O(n + m).

Defining Efficiency

« When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many

possible

options.

« Brute-force solutions tend to take at least

exponen

'ial time to complete.

e Clever al
or O(n?),

gorithms often run in time O(n),
or O(n?), etc.

Polynomials and Exponentials

 An algorithm runs in polynomial time it
its runtime is some polynomial in n.

« That is, time O(n*) for some constant k.
* Polynomial functions “scale well.”

 Small changes to the size of the input do not
typically induce enormous changes in the
overall runtime.

« Exponential functions scale terribly.

 Small changes to the size of the input induce
huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently it
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(n*) for some k € N.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is
somewhat controversial.

The Cobham-Edmonds Thesis

Which of the following are considered efficient runtimes?

1 n:-3n+ 17

2 nlog n
3 n1.000.000,000
4 n"

0 n!

6 A

7 1.0000001"

8 10500

Go to
PollEv.com/cs103spr25

The Cobham-Edmonds Thesis

Which of the following are considered efficient runtimes?

1

S W

n:-3n+ 17

]ﬂk This is a polynomial in n.

nlogn

]ﬂF Bounded by n.

nl,OO0,000,000

]ﬂL This is a polynomial in n.

n" X | Eventually bigger than n* for all k.

n! X | Eventually bigger than n* for all k.

A X | Eventually bigger than n* for all k.

1.0000001~ X | Eventually bigger than n* for all k.
109

]ﬂp 0300 = 105% nO js a polynomial in n.

Why Polynomials?

« Polynomial time somewhat captures efficient
computation, but has a few edge cases.

« However, polynomials have very nice mathematical
properties:

« The sum of two polynomials is a polynomial.
(Running one efficient algorithm, then another,
gives an efficient algorithm.)

 The product of two polynomials is a polynomial.
(Running one efficient algorithm a “reasonable”
number of times gives an efficient algorithm.)

« The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the
input to another efficient algorithm gives an
efficient algorithm.)

The Complexity Class P

« The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

 Formally:

P = { L | There is a polynomial-time
decider for L }

« Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

Examples of Problems in P

» All regular languages are in P.
« All have linear-time TMs.
« All CFLs are in P.

« Requires a more nuanced argument (the
CYK algorithm or Earley's algorithm).

 And a ton of other problems are in P as
well.

e Curious? Take CS101!

CFLs

Efficiently
Decidable
Languages

Undecidable Languages

Regular

Languages

Undecidable Languages

What can't you do in polynomial time?

How many subsels
of fThis set are
There?

An Interesting Observation

 There are (at least) exponentially many
objects of each of the preceding types.

« However, each of those objects is not
very large.

 Each simple path has length no longer than
the number of nodes in the graph.

e Each subset of a set has no more elements
than the original set.

» This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifiers - Again

7 6 1
3 5 2
3 1 519 7
6 5 3 8 9
1 2
8 2 1 5 4
1 3] 2 7 8
5 7 4
4 8 7

Does this Sudoku problem
have a solution?

Verifiers - Again

Does this Sudoku problem

have a solution?

Verifiers - Again

11 9 7 13 5 6 1 12 2 8

Is there an ascending subsequence of
length at least 57?

Verifiers - Again

11

9 7135 6 112 2 8 0 (16

Is there an ascending subsequence of
length at least 57?

Verifiers - Again

ﬁ

Is there a path that goes through
every node exactly once?

Verifiers - Again

Is there a path that goes through
every node exactly once?

Verifiers

 Recall that a verifierforLisaTM V
such that

« V halts on all inputs.
e weL o dc € 2* Vaccepts (w, c).

Polynomial-Time Verifiers

A polynomial-time verifier for L is a
TM V such that

« V halts on all inputs.
e weL o dc € 2* Vaccepts (w, c).

« V runs “efficiently” (its runtime is O(|w|*) for
some k € N).

« All strings in L have “short” certificates
(their lengths are O(|w|") for some r € N).

The Complexity Class NP

The complexity class NP (nondeterministic polynomial time)
contains all problems that can be verified in polynomial time.

Formally:

NP = { L | There is a polynomial-time
verifier for L }

The name NP comes from another way of characterizing NP. If
you introduce nondeterministic Turing machines and
appropriately define “polynomial time,” then NP is the set of
problems that an NTM can solve in polynomial time.

Useful fact: NP wR.

 Proofidea: If L € NP, all strings in L have “short” certificates.
Therefore, we can just try all possible “short” certificates and see if
any of them work. (Showing NP is a strict subset of R requires some
more advanced techniques.)

NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }

RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }

We know that R # RE.

So does that mean P # NP?

Time-Out for Announcements!

Please evaluate this course in Axess.
Your comments really make a difference.

Final Exam Logistics

Our final exam is on , Saturday, June 7" from
8:30AM - 11:30AM.

Everyone should have received an email with
their exam location

* Seat assignments coming later this week
The final exam is covers all psets and lectures.

The format is the same as the midterms, a mix
of short-answer questions and written proofs.

Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” X 11” notes sheet with you.

Review Session

e 2-3pm Thursday
« STLC115

Back to CS103!

And now...

The
Biggest Question
in

Theoretical Computer Science

P PNP

P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time
verifier for L }

input string (w)>/ A @

Polynomial-Time

Decider for L
et

bool solveProblemL(string w) {

do some work;
return the answer;

}

P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time

verifier for L }

/

input string (w)>

certificate (c) >
(ignored) 0

Verifier for L

\

Polynomial-Time

4

}

bool solveProblemL(string w, string c) {
/* don't even look at c */
do some work;
return the answer;

Which Picture is Correct?

NP

Which Picture is Correct?

P PNP

« The P PNP question is the most important open
question in theoretical computer science.

« With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be checked efficiently,
can that problem also be solved efficiently?

« An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

« The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

 Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

 Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

 Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

 Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

« And many more.

« If P = NP, all of these problems have efficient solutions.

« If P # NP, none of these problems have efficient solutions.

Why This Matters

« If P = NP:

« A huge number of seemingly difficult
problems could be solved etficiently.

* Our capacity to solve many problems will

scale well with the size of the problems we
want to solve.

« If P = NP:

« Enormous computational power would be
required to solve many seemingly easy tasks.

« Our capacity to solve problems will fail to
keep up with our curiosity.

What We Know

« Resolving P PNP has proven extremely difficult.
« In the past 50 years:

« Not a single correct proof either way has been
found.

« Many types of proofs have been shown to be
insufficiently powerful to determine whether
P PNP.

« A majority of computer scientists believe P # NP,
but it isn't an overwhelming majority.

» Interesting read: Interviews with leading thinkers
about P PNP:

« https://www.cs.umd.edu/~gasarch/papers/poll.pdf

https://www.cs.umd.edu/~gasarch/papers/poll.pdf

The Million-Dollar Question
CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves
or disproves P = NP.

“My hunch is that [P PNP] will be solved
by a young researcher who is not
encumbered by too much conventional
wisdom about how to attack the problem.”

- Prof. Richard Karp

(The guy who first popularized the P 'PNP problem.)

What do we know about P PNP?

Adapting our Techniques

NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }

RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }

We know that R # RE.

So does that mean P # NP?

A Problem

 The R and RE languages correspond to
problems that can be decided and
verified, period, without any time
bounds.

« To reason about what's in R and what's
in RE, we used two key techniques:

 Universality: TMs can simulate other TMs.

 Self-Reference: TMs can get their own
source code.

« Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P PNP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

Next Time

 Reducibility

« A technique for connecting problems to one
another.

« NP-Completeness
« What are the hardest problems in NP?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

